Convergence of Gauss curvature flows to translating solitons
نویسندگان
چکیده
We address the asymptotic behavior of ?-Gauss curvature flow, for ?>1/2, with a complete non-compact convex initial hypersurface which is contained in cylinder bounded cross section. show that flow converges, as t?+?, locally smoothly to translating soliton uniquely determined by hypersurface.
منابع مشابه
Translating Solitons to Symplectic and Lagrangian Mean Curvature Flows
In this paper, we construct finite blow-up examples for symplectic mean curvature flows and we study properties of symplectic translating solitons. We prove that, the Kähler angle α of a symplectic translating soliton with max |A| = 1 satisfies that sup |α| > π 4 |T | |T |+1 where T is the direction in which the surface translates. Mathematics Subject Classification (2000): 53C44 (primary), 53C...
متن کاملTranslating Solitons of Mean Curvature Flow of Noncompact Spacelike
In this paper, we study the existence, uniqueness and asymptotic behavior of rotationally symmetric translating solitons of the mean curvature flow in Minkowski space. We also study the asymptotic behavior and the strict convexity of general solitons of such flows.
متن کاملTranslating Solutions to Lagrangian Mean Curvature Flow
We prove some non-existence theorems for translating solutions to Lagrangian mean curvature flow. More precisely, we show that translating solutions with an L bound on the mean curvature are planes and that almost-calibrated translating solutions which are static are also planes. Recent work of D. Joyce, Y.-I. Lee, and M.-P. Tsui, shows that these conditions are optimal.
متن کاملMotion of Hypersurfaces by Gauss Curvature
We consider n-dimensional convex Euclidean hypersurfaces moving with normal velocity proportional to a positive power α of the Gauss curvature. We prove that hypersurfaces contract to points in finite time, and for α ∈ (1/(n + 2], 1/n] we also prove that in the limit the solutions evolve purely by homothetic contraction to the final point. We prove existence and uniqueness of solutions for non-...
متن کاملEntropy and a Convergence Theorem for Gauss Curvature Flow in High Dimension
In this paper we prove uniform regularity estimates for the normalized Gauss curvature flow in higher dimensions. The convergence of solutions in C∞-topology to a smooth strictly convex soliton as t approaches to infinity is obtained as a consequence of these estimates together with an earlier result of Andrews. The estimates are established via the study of an entropy functional for convex bod...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Mathematics
سال: 2022
ISSN: ['1857-8365', '1857-8438']
DOI: https://doi.org/10.1016/j.aim.2022.108207