Convergence of Gauss curvature flows to translating solitons

نویسندگان

چکیده

We address the asymptotic behavior of ?-Gauss curvature flow, for ?>1/2, with a complete non-compact convex initial hypersurface which is contained in cylinder bounded cross section. show that flow converges, as t?+?, locally smoothly to translating soliton uniquely determined by hypersurface.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Translating Solitons to Symplectic and Lagrangian Mean Curvature Flows

In this paper, we construct finite blow-up examples for symplectic mean curvature flows and we study properties of symplectic translating solitons. We prove that, the Kähler angle α of a symplectic translating soliton with max |A| = 1 satisfies that sup |α| > π 4 |T | |T |+1 where T is the direction in which the surface translates. Mathematics Subject Classification (2000): 53C44 (primary), 53C...

متن کامل

Translating Solitons of Mean Curvature Flow of Noncompact Spacelike

In this paper, we study the existence, uniqueness and asymptotic behavior of rotationally symmetric translating solitons of the mean curvature flow in Minkowski space. We also study the asymptotic behavior and the strict convexity of general solitons of such flows.

متن کامل

Translating Solutions to Lagrangian Mean Curvature Flow

We prove some non-existence theorems for translating solutions to Lagrangian mean curvature flow. More precisely, we show that translating solutions with an L bound on the mean curvature are planes and that almost-calibrated translating solutions which are static are also planes. Recent work of D. Joyce, Y.-I. Lee, and M.-P. Tsui, shows that these conditions are optimal.

متن کامل

Motion of Hypersurfaces by Gauss Curvature

We consider n-dimensional convex Euclidean hypersurfaces moving with normal velocity proportional to a positive power α of the Gauss curvature. We prove that hypersurfaces contract to points in finite time, and for α ∈ (1/(n + 2], 1/n] we also prove that in the limit the solutions evolve purely by homothetic contraction to the final point. We prove existence and uniqueness of solutions for non-...

متن کامل

Entropy and a Convergence Theorem for Gauss Curvature Flow in High Dimension

In this paper we prove uniform regularity estimates for the normalized Gauss curvature flow in higher dimensions. The convergence of solutions in C∞-topology to a smooth strictly convex soliton as t approaches to infinity is obtained as a consequence of these estimates together with an earlier result of Andrews. The estimates are established via the study of an entropy functional for convex bod...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Mathematics

سال: 2022

ISSN: ['1857-8365', '1857-8438']

DOI: https://doi.org/10.1016/j.aim.2022.108207